Transition matrix and generalized matrix exponential via the Peano-Baker series
نویسندگان
چکیده
منابع مشابه
The Peano-baker Series
Abstract. This note reviews the Peano-Baker series and its use to solve the general linear system of ODEs. The account is elementary and self-contained, and is meant as a pedagogic introduction to this approach, which is well known but usually treated as a folklore result or as a purely formal tool. Here, a simple convergence result is given, and two examples illustrate that the series can be u...
متن کاملThe Generalized Pascal Matrix via the Generalized Fibonacci Matrix and the Generalized Pell Matrix
In [4], the authors studied the Pascal matrix and the Stirling matrices of the first kind and the second kind via the Fibonacci matrix. In this paper, we consider generalizations of Pascal matrix, Fibonacci matrix and Pell matrix. And, by using Riordan method, we have factorizations of them. We, also, consider some combinatorial identities.
متن کاملGeneralized matrix functions, determinant and permanent
In this paper, using permutation matrices or symmetric matrices, necessary and sufficient conditions are given for a generalized matrix function to be the determinant or the permanent. We prove that a generalized matrix function is the determinant or the permanent if and only if it preserves the product of symmetric permutation matrices. Also we show that a generalized matrix function is the de...
متن کاملGeneralized Polar Decompositions for the Approximation of the Matrix Exponential
In this paper we describe the use of the theory of generalized polar decompositions [H. Munthe-Kaas, G. R. W. Quispel, and A. Zanna, Found. Comput. Math., 1 (2001), pp. 297–324] to approximate a matrix exponential. The algorithms presented have the property that, if Z ∈ g, a Lie algebra of matrices, then the approximation for exp(Z) resides in G, the matrix Lie group of g. This property is very...
متن کاملEfficient Computation of the Matrix Exponential by Generalized Polar Decompositions
Abstract. In this paper we explore the computation of the matrix exponential in a manner that is consistent with Lie-group structure. Our point of departure is the method of generalized polar decompositions, which we modify and combine with similarity transformations that bring the underlying matrix to a form more amenable to efficient computation. We develop techniques valid for a range of Lie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Difference Equations and Applications
سال: 2005
ISSN: 1023-6198,1563-5120
DOI: 10.1080/10236190500272798